
13th of February, 2024

PhD defense of Gertjan Franken

Security and Privacy Policy Bugs
in Browser Engines

Security and Privacy Policy Bugs
in Browser Engines

н

Perimeter, 20/08/2020

Threatpost10/08/2020

(CVE-2020-6519)

3

Blink

Browser engine

User interface

ÅCommunicate with web server

ÅRender web page

Å Execute embedded scripts

Å Enforce policies

WebKit

Gecko

Web browser

Web Standards Self-defined Policies

ÅNo formal specification

п

Policy Code

5

10k lines of code1991

+25M lines of code2024

tǊƻƧŜŎǘ Lines of code

Android 14,606k

Firefox (Gecko) 28,049k

Chromium (Blink) 28,528k

Linux kernel 34,412k

6

2001 KHTML

2013

1997

1998

NOW

Gecko

Blink

WebKit

7

Evaluation of cookie and request policies

USENIX Security ó18

[Ch2: Who Left Open the Cookie Jar?]

Longitudinal lifecycle analysis of CSP bugs

USENIX Security ô23

[Ch3: A Bugôs Life]

Security and privacy in EPUB reading systems

IEEE S&P ô21

[Ch4: Reading Between the Lines]

8

Web 101: cookies and requests

Hello, world!

news.com

dogs.com

<html>

Hello, world!

</html>

ƘǘǘǇǎΥκκƴŜǿǎΦŎƻƳ

id=cQqE3S42xAkDqjWF

Cross-site request
pic.jpg

<html>

Hello, world!

</html>

pic.jpg

user=s2ooYNDBuDm7Lj

Third-party cookie

No problem user
s2ooYNDBuDm7Lj!

I will transfer the money!
9

Cross-site Request Forgery (CSRF)

Hello, world!

news.com

bank.com

https://news.com

image

<html>

Hello, world!

<img src=

óbank.com/transfer?a=500&rҐattackerô>

</html>

user=s2ooYNDBuDm7Lj

SameSite cookie (SS)

SS

SS

Who are you??

10

Cross-site tracking

Hello, world!

news.com

facebook.com

https:// news.com

Like
button

<html>

Hello, world!

<script src=ófacebook.com/lb ô>

</script>

</html>

id=s2ooYNDBuDm7Lj

Block all (third-party) cookies
Block all requests to trackers

ǾƛŘŜƻΦŎƻƳ

11

Methodology

Experiment

running!

source.test

sink.test

https://source.test

<image href =` sink.test `>

<script src =` sink.test `></script>

link

<portal src =` sink.test `></portal>

<embed src =` sink.test `></embed>

<bgsound src =` sink.test `></ bgsound >

<video poster=` sink.test `></video>

<link rel =[...] href =` sink.test `/>

<form action=` sink.test `></form>

<xml src =` sink.test ` id="xml"></xml>

$$

<object data=` sink.test `></object>

<base href =` sink.test `>

<IMPORT implementation=` sink.test `/>

tǊƻȄȅ

Automation

12

46 ad blocking and
anti-tracking extensions

13

Takeaways I

if tracking_protection _enabled() :
 request.block ()On / off switch ï conceptually simple

ÉÆ ÃÏÏËÉÅÓʍÄÉÓÁÂÌÅÄƽƾƙ
 ÒÅÑÕÅÓÔƚÅØÃÌÕÄÅʍÃÏÏËÉÅƽƾ

Just oversights?

Many policies are retroactively added

New policy

Scrutinize all

supported features

Update all

relevant policies

New feature

*

ϝмл ς млл ŦŜŀǘǳǊŜǎ ǇŜǊ ǊŜƭŜŀǎŜ

1 year later: only a few complete fixes

14

Evaluation of cookie and request policies

USENIX Security ó18

[Ch2: Who Left Open the Cookie Jar?]

Longitudinal lifecycle analysis of CSP bugs

USENIX Security ô23

[Ch3: A Bugôs Life]

Security and privacy in EPUB reading systems

IEEE S&P ô21

[Ch4: Reading Between the Lines]

Content Security Policy (CSP)

ÅDefense in-depth against content injection attacks (e.g., XSS) and clickjacking

ÅDefined by website

ÅEnforced by web browser

ÅñLivingstandardò

мр

CSP v1 CSP v2

2012 2014

CSP v3

2024

Fix

ÍÁÉÎƽƾƙ
 ÐÁÓÓ

ÉÆ ʍʍÎÁÍÅʍʍ ˮˮ źʍʍÍÁÉÎʍʍźƙ
 Ò ˮ ÍÁÉÎƽƾ

16

Code revisions

Time

> 1.000.000 revisions

> 100 revisions / day

Version Control System (e.g., Git)

main():
 pass

if __name__ == `__main__`:
 arg = input()
 r = main()

main(a):
 pass

if __name__ == `__main__`:
 arg = input()
 r = main(arg)

ÍÁÉÎƽÁƾƙ
 ÐÁÓÓ

ÉÆ ʍʍÎÁÍÅʍʍ ˮˮ źʍʍÍÁÉÎʍʍźƙ
 ×ÈÉÌÅ 4ÒÕÅƙ
 ÁÒÇ ˮ ÉÎÐÕÔƽƾ

 ÉÆ ÁÒÇ ˮ ˮ źÅØÉÔźƙ
 ÅØÉÔƽʣƾ
 Ò ˮ ÍÁÉÎƽÁÒÇƾ

main(a):
 pass

if __name__ == `__main__`:
 while True:

 arg = input()
 if arg == `exit`:
 exit(0)
 r = main(arg)
 print(f`computer says {r}`)

main(a):
 return `no`

if __name__ == `__main__`:
 while True:

 arg = input()
 if arg == `exit`:
 exit(0)
 r = main(arg)
 print(f`computer says {r}`)

Proof of Concept
(PoC)

Reproduce bug:
1. Open browser
2. Visit index.html
3. ...

ConfidentialFix Public

Ñ 3 months

Time:

Author:

Commit message:

say_no(a):
 return `no`

if __name__ == `__main__`:
 while True:

 arg = input()
 if arg == `exit`:
 exit(0)
 r = say_no(arg)
 print(f`computer says {r}`)

say_no(a : str) - > str :
 return `no`

if __name__ == `__main__`:
 while True:

 arg = input()
 if arg == `exit`:
 exit(0)
 r = say_no(arg)
 print(f`computer says {r}`)

say_no(a: str) - > str:
 return `no`

if __name__ == `__main__`:
 while True:

 arg = input()
 if arg == `exit`:
 exit(0)
 r = say_no(arg)
 print(f`computer says {r}`)
 exit(0)

Intro

Time:

Author:

Commit message:

17

BugHog

Fully containerized

Dependencies managed

 Chromium v25 ï latest

 Firefox v23 ï latest

Concurrency

PoCs of CSP bugs

Ą 75 unique bugs

Revision binaries

Automated lifecycle pinpointing

Delta with

state of practice

18

1. Bug introducing revisions Intentions of bug introducing revisions

ÅHalf of all bugs are foundational

Å$5000 bug lived under the radar for 8 years

ÅModifications to CSP logic
are likely to cause new bugs

ÅNon-security feature introductions
can act as bypass

ÅFragmented enforcement logic may
lead to oversights

2. Room for improvement for cross-browser bug sharing

ÅCurrent practice: Web Platform Tests (WPT)

ÅVendors push and pull regression tests to and from shared repo

ÅCross-browser evaluation

75 unique bugs 14 shared bugs

8 reported for one browser

7 lifetime could have been

reduced or even avoided

in stable release

4 reproducible in Safari 16.2

3 fixed 1 not considered a bug

 {ŀŦŀǊƛ ǿŀǎ ŜȄǇƻǎŜŘ ŦƻǊ Ҕ м ȅŜŀǊ ŦƻǊ ŜŀŎƘ ƻŦ ǘƘŜǎŜ ōǳƎǎ
19

нл

3. Inconsistent bug handling can lead to premature disclosure

> 1 year avoidable

exposure
2 Chromium bugs 1 Firefox bug

Still present in the latest release at the time of the evaluation

Reported and fixed

21

Takeaways II

Everybody gets a free

attack vector!

You get an

attack vector!

You get an

attack vector!
Bug handling and sharing
Å Current practice leaves room for improvement

Å Avoidable exposure

BugHog: open-source
ÅResearchers and browser vendors
Å From policies to multi-stage attacks

Premature disclosure of bugs

First longitudinal bug lifecycle analysis
Å Based on empirical evidence

Å Independent of developer labels

нн

Evaluation of cookie and request policies

USENIX Security ó18

[Ch2: Who Left Open the Cookie Jar?]

Longitudinal lifecycle analysis of CSP bugs

USENIX Security ô23

[Ch3: A Bugôs Life]

Security and privacy in EPUB reading systems

IEEE S&P ô21

[Ch4: Reading Between the Lines]

3.2

XHTML

/{{

JavaScript

но

.EPUB (.ZIP)

9t¦. ŦƛƭŜ

EPUB
reading system

[ƻǊŜƳ ƛǇǎǳƳ ŘƻƭƻǊ
ǎƛǘ ŀƳŜǘΣ ǘŜ ǉǳƻ
ƳƻŘƻ ǇŜǘŜƴǘƛǳƳΦ
tǳǘŜƴǘ ŀǘƻƳƻǊǳƳ
ŜƭŜŎǘǊŀƳ ƴƻ ǳǎǳΦ
Iƛǎ ƛǊƛǳǊŜ ǾƻƭǳƳǳǎ
ƘŜƴŘǊŜǊƛǘ ƛŘΣ Ŝŀ
ƴƻǾǳƳ ŘŜǎŜǊǳƴǘ
ǾŜƭΦ 9ǘ ǎƛƴǘ ƎǊŀŜŎƻ
ƳŜƭΦ LŘ ƛǳǎ ŘŜǘǊŀȄƛǘ
ƛƴŎƻǊǊǳǇǘŜ
ǘŜƳǇƻǊƛōǳǎΣ ǎƛƴǘ
ƛƴŀƴƛ ǾƛǘŀŜ Ŝƻǎ ŜǘΣ
ǉǳƻŘ ǇƻǎƛŘƻƴƛǳƳ

24

92 reading applications5 reading devices

Methodology

25

File system access

Existence: 16%

Steal contents: 8%

Amazon Kindle embedded a

10 year old WebKit version

Insecure engines

2 / 5 e-readers

Opening apps through

URI handles

25%

Capabilities of malicious e-book

Ñ 50% untrusted JS execution and

remote communication

Feature API access

5%

26

нт

Case studies

Ą persistent DOS
Ą user information disclosure

Ą universal XSS

Ą information leaking

Apple Books

EPUBReader

Amazon Kindle

Capability (ab)use in the wild

28

.hhY

Capability (ab)use in the wild

ÅMalicious EPUBs distributed
through illegal channels
ÅThe Pirate Bay, 4shared

Å+/-9,000 EPUBs

29

< 1% contained JavaScript (all benign)BOOK

Capability (ab)use in the wild

30

ÅTracking EPUBs distributed
through legal channels
ÅFree e-books from the most popular
EPUB vendors

No indications of tracking

Are self-published EPUBs
sufficiently sanitized?

31

aŀƴǳǎŎǊƛǇǘ Publication

фп҈

ñThis is not for everybody.

Like, really, actually for nobody.ò

TakeawaysIII

32

Inadequate sanitization of self-published e-books

Collaboration with W3C
Å Integration into the official testbed
Å Improvements to the standard

Embedding browser engine in native applications
ÅInsecure configurations

ÅAttack surface is needlessly large

ÅResponsible disclosure for 37 reading systems

Other notorious browser

engine embedders

оо

Evaluation of cookie and request policies

USENIX Security ó18

[Ch2: Who Left Open the Cookie Jar?]

Longitudinal lifecycle analysis of CSP bugs

USENIX Security ô23

[Ch3: A Bugôs Life]

Security and privacy in EPUB reading systems

IEEE S&P ô21

[Ch4: Reading Between the Lines]

оп

More features, more problems

Old foundation

Idealistic approach

Pragmatic approach

Automation! Automation!

Automation!

ор

Avoid exposure due to bug handling and sharing issues

Avoid needlessly large attack surfaces of embedded browser engines

ÅStandardized bug reporting language

ÅShared bug reporting platform

In depth bug analysis: BugHog!

Modular browser engines Transparency towards developers and users

