
13th of February, 2024

PhD defense of Gertjan Franken

Security and Privacy Policy Bugs
in Browser Engines

Security and Privacy Policy Bugs
in Browser Engines

2

Perimeter, 20/08/2020

Threatpost 10/08/2020

(CVE-2020-6519)

3

Blink

Browser engine

User interface

• Communicate with web server

• Render web page

• Execute embedded scripts

• Enforce policies

WebKit

Gecko

Web browser

Web Standards Self-defined Policies

• No formal specification

4

Policy Code

5

10k lines of code1991

+25M lines of code2024

Project Lines of code

Android 14,606k

Firefox (Gecko) 28,049k

Chromium (Blink) 28,528k

Linux kernel 34,412k

6

2001 KHTML

2013

1997

1998

NOW

Gecko

Blink

WebKit

7

Evaluation of cookie and request policies

USENIX Security ‘18

[Ch2: Who Left Open the Cookie Jar?]

Longitudinal lifecycle analysis of CSP bugs

USENIX Security ’23

[Ch3: A Bug’s Life]

Security and privacy in EPUB reading systems

IEEE S&P ’21

[Ch4: Reading Between the Lines]

8

Web 101: cookies and requests

Hello, world!

news.com

dogs.com

<html>

Hello, world!

</html>

https://news.com

id=cQqE3S42xAkDqjWF

Cross-site request
pic.jpg

<html>

Hello, world!

</html>

pic.jpg

user=s2ooYNDBuDm7Lj

Third-party cookie

No problem user
s2ooYNDBuDm7Lj!

I will transfer the money!
9

Cross-site Request Forgery (CSRF)

Hello, world!

news.com

bank.com

https://news.com

image

<html>

Hello, world!

<img src=

‘bank.com/transfer?a=500&r=attacker’>
</html>

user=s2ooYNDBuDm7Lj

SameSite cookie (SS)

SS

SS

Who are you??

10

Cross-site tracking

Hello, world!

news.com

facebook.com

https://news.com

Like
button

<html>

Hello, world!

<script src=‘facebook.com/lb’>

</script>

</html>

id=s2ooYNDBuDm7Lj

Block all (third-party) cookies
Block all requests to trackers

video.com

11

Methodology

Experiment

running!

source.test

sink.test

https://source.test

<image href=`sink.test`>

<script src=`sink.test`></script>

link

<portal src=`sink.test`></portal>

<embed src=`sink.test`></embed>

<bgsound src=`sink.test`></bgsound>

<video poster=`sink.test`></video>

<link rel=[...] href=`sink.test`/>

<form action=`sink.test`></form>

<xml src=`sink.test` id="xml"></xml>

$$

<object data=`sink.test`></object>

<base href=`sink.test`>

<IMPORT implementation=`sink.test`/>

Proxy

Automation

12

46 ad blocking and
anti-tracking extensions

13

Takeaways I

if tracking_protection_enabled():
 request.block()On / off switch – conceptually simple

if cookies_disabled():
 request.exclude_cookie()

Just oversights?

Many policies are retroactively added

New policy

Scrutinize all

supported features

Update all

relevant policies

New feature

*

*10 – 100 features per release

1 year later: only a few complete fixes

14

Evaluation of cookie and request policies

USENIX Security ‘18

[Ch2: Who Left Open the Cookie Jar?]

Longitudinal lifecycle analysis of CSP bugs

USENIX Security ’23

[Ch3: A Bug’s Life]

Security and privacy in EPUB reading systems

IEEE S&P ’21

[Ch4: Reading Between the Lines]

Content Security Policy (CSP)

• Defense in-depth against content injection attacks (e.g., XSS) and clickjacking

• Defined by website

• Enforced by web browser

• “Living standard”

15

CSP v1 CSP v2

2012 2014

CSP v3

2024

Fix

main():
 pass

if __name__ == `__main__`:
 r = main()

16

Code revisions

Time

> 1.000.000 revisions

> 100 revisions / day

Version Control System (e.g., Git)

main():
 pass

if __name__ == `__main__`:
 arg = input()
 r = main()

main(a):
 pass

if __name__ == `__main__`:
 arg = input()
 r = main(arg)

main(a):
 pass

if __name__ == `__main__`:
 while True:
 arg = input()

 if arg == `exit`:
 exit(0)
 r = main(arg)

main(a):
 pass

if __name__ == `__main__`:
 while True:

 arg = input()
 if arg == `exit`:
 exit(0)
 r = main(arg)
 print(f`computer says {r}`)

main(a):
 return `no`

if __name__ == `__main__`:
 while True:

 arg = input()
 if arg == `exit`:
 exit(0)
 r = main(arg)
 print(f`computer says {r}`)

Proof of Concept
(PoC)

Reproduce bug:
1. Open browser
2. Visit index.html
3. ...

Confidential Fix Public

± 3 months

Time:

Author:

Commit message:

say_no(a):
 return `no`

if __name__ == `__main__`:
 while True:

 arg = input()
 if arg == `exit`:
 exit(0)
 r = say_no(arg)
 print(f`computer says {r}`)

say_no(a: str) -> str:
 return `no`

if __name__ == `__main__`:
 while True:

 arg = input()
 if arg == `exit`:
 exit(0)
 r = say_no(arg)
 print(f`computer says {r}`)

say_no(a: str) -> str:
 return `no`

if __name__ == `__main__`:
 while True:

 arg = input()
 if arg == `exit`:
 exit(0)
 r = say_no(arg)
 print(f`computer says {r}`)
 exit(0)

Intro

Time:

Author:

Commit message:

17

BugHog

Fully containerized

Dependencies managed

 Chromium v25 – latest

 Firefox v23 – latest

Concurrency

PoCs of CSP bugs

→ 75 unique bugs

Revision binaries

Automated lifecycle pinpointing

Delta with

state of practice

18

1. Bug introducing revisions Intentions of bug introducing revisions

• Half of all bugs are foundational

• $5000 bug lived under the radar for 8 years

• Modifications to CSP logic
are likely to cause new bugs

• Non-security feature introductions
can act as bypass

• Fragmented enforcement logic may
lead to oversights

2. Room for improvement for cross-browser bug sharing

• Current practice: Web Platform Tests (WPT)

• Vendors push and pull regression tests to and from shared repo

• Cross-browser evaluation

75 unique bugs 14 shared bugs

8 reported for one browser

7 lifetime could have been

reduced or even avoided

in stable release

4 reproducible in Safari 16.2

3 fixed 1 not considered a bug

 Safari was exposed for > 1 year for each of these bugs
19

20

3. Inconsistent bug handling can lead to premature disclosure

> 1 year avoidable

exposure
2 Chromium bugs 1 Firefox bug

Still present in the latest release at the time of the evaluation

Reported and fixed

21

Takeaways II

Everybody gets a free

attack vector!

You get an

attack vector!

You get an

attack vector!
Bug handling and sharing
• Current practice leaves room for improvement

• Avoidable exposure

BugHog: open-source
• Researchers and browser vendors
• From policies to multi-stage attacks

Premature disclosure of bugs

First longitudinal bug lifecycle analysis
• Based on empirical evidence

• Independent of developer labels

22

Evaluation of cookie and request policies

USENIX Security ‘18

[Ch2: Who Left Open the Cookie Jar?]

Longitudinal lifecycle analysis of CSP bugs

USENIX Security ’23

[Ch3: A Bug’s Life]

Security and privacy in EPUB reading systems

IEEE S&P ’21

[Ch4: Reading Between the Lines]

3.2

XHTML

CSS

JavaScript

23

.EPUB (.ZIP)

EPUB file

EPUB
reading system

Lorem ipsum dolor
sit amet, te quo
modo petentium.
Putent atomorum
electram no usu.
His iriure volumus
hendrerit id, ea
novum deserunt
vel. Et sint graeco
mel. Id ius detraxit
incorrupte
temporibus, sint
inani vitae eos et,
quod posidonium

24

92 reading applications 5 reading devices

Methodology

25

File system access

Existence: 16%

Steal contents: 8%

Amazon Kindle embedded a

10 year old WebKit version

Insecure engines

2 / 5 e-readers

Opening apps through

URI handles

25%

Capabilities of malicious e-book

± 50% untrusted JS execution and

remote communication

Feature API access

5%

26

27

Case studies

→ persistent DOS
→ user information disclosure

→ universal XSS

→ information leaking

Apple Books

EPUBReader

Amazon Kindle

Capability (ab)use in the wild

28

BOOK

Capability (ab)use in the wild

• Malicious EPUBs distributed
through illegal channels

• The Pirate Bay, 4shared

• +/- 9,000 EPUBs

29

< 1% contained JavaScript (all benign) BOOK

Capability (ab)use in the wild

30

• Tracking EPUBs distributed
through legal channels

• Free e-books from the most popular
EPUB vendors

No indications of tracking

Are self-published EPUBs
sufficiently sanitized?

31

Manuscript Publication

94%

“This is not for everybody.

Like, really, actually for nobody.”

Takeaways III

32

Inadequate sanitization of self-published e-books

Collaboration with W3C
• Integration into the official testbed
• Improvements to the standard

Embedding browser engine in native applications
• Insecure configurations

• Attack surface is needlessly large

• Responsible disclosure for 37 reading systems

Other notorious browser

engine embedders

33

Evaluation of cookie and request policies

USENIX Security ‘18

[Ch2: Who Left Open the Cookie Jar?]

Longitudinal lifecycle analysis of CSP bugs

USENIX Security ’23

[Ch3: A Bug’s Life]

Security and privacy in EPUB reading systems

IEEE S&P ’21

[Ch4: Reading Between the Lines]

34

More features, more problems

Old foundation

Idealistic approach

Pragmatic approach

Automation! Automation!

Automation!

35

Avoid exposure due to bug handling and sharing issues

Avoid needlessly large attack surfaces of embedded browser engines

• Standardized bug reporting language

• Shared bug reporting platform

In depth bug analysis: BugHog!

Modular browser engines Transparency towards developers and users

13th of February, 2024

PhD defense of Gertjan Franken

Security and Privacy Policy Bugs
in Browser Engines

	Slide 1: Security and Privacy Policy Bugs in Browser Engines
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Web 101: cookies and requests
	Slide 9: Cross-site Request Forgery (CSRF)
	Slide 10: Cross-site tracking
	Slide 11: Methodology
	Slide 12
	Slide 13: Takeaways I
	Slide 14
	Slide 15: Content Security Policy (CSP)
	Slide 16: Code revisions
	Slide 17
	Slide 18: 1. Bug introducing revisions
	Slide 19: 2. Room for improvement for cross-browser bug sharing
	Slide 20: 3. Inconsistent bug handling can lead to premature disclosure
	Slide 21: Takeaways II
	Slide 22
	Slide 23: 3.2
	Slide 24: Methodology
	Slide 25: Capabilities of malicious e-book
	Slide 26
	Slide 27: Case studies
	Slide 28: Capability (ab)use in the wild
	Slide 29: Capability (ab)use in the wild
	Slide 30: Capability (ab)use in the wild
	Slide 31: Are self-published EPUBs sufficiently sanitized?
	Slide 32: Takeaways III
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Security and Privacy Policy Bugs in Browser Engines

